Ruckig 0.15.0
Motion Generation for Robots and Machines
Loading...
Searching...
No Matches
Example 05: Velocity Control

C++

#include <iostream>
using namespace ruckig;
int main() {
// Create instances: the Ruckig OTG as well as input and output parameters
Ruckig<3> otg(0.01); // control cycle
// Set input parameters and velocity control interface
input.control_interface = ControlInterface::Velocity;
input.current_position = {0.0, 0.0, 0.5};
input.current_velocity = {3.0, -2.2, -0.5};
input.current_acceleration = {0.0, 2.5, -0.5};
input.target_velocity = {0.0, -0.5, -1.5};
input.target_acceleration = {0.0, 0.0, 0.5};
input.max_acceleration = {3.0, 2.0, 1.0};
input.max_jerk = {6.0, 6.0, 4.0};
// Generate the trajectory within the control loop
std::cout << "t | position" << std::endl;
while (otg.update(input, output) == Result::Working) {
std::cout << output.time << " | " << join(output.new_position) << std::endl;
output.pass_to_input(input);
}
std::cout << "Trajectory duration: " << output.trajectory.get_duration() << " [s]." << std::endl;
}
int main()
Definition 01_position.cpp:8
Input of the Ruckig algorithm.
Definition input_parameter.hpp:48
CustomVector< double, DOFs > current_acceleration
Definition input_parameter.hpp:108
CustomVector< double, DOFs > current_velocity
Definition input_parameter.hpp:108
CustomVector< double, DOFs > current_position
Current (start) state.
Definition input_parameter.hpp:108
CustomVector< double, DOFs > max_jerk
Jerk limit.
Definition input_parameter.hpp:120
CustomVector< double, DOFs > target_velocity
Definition input_parameter.hpp:111
CustomVector< double, DOFs > target_acceleration
Definition input_parameter.hpp:111
CustomVector< double, DOFs > max_acceleration
Acceleration limit.
Definition input_parameter.hpp:117
ControlInterface control_interface
The default position interface controls the full kinematic state.
Definition input_parameter.hpp:96
Output of the Ruckig algorithm.
Definition output_parameter.hpp:15
CustomVector< double, DOFs > new_position
New position values at the given time.
Definition output_parameter.hpp:35
double time
Current time on the trajectory.
Definition output_parameter.hpp:50
void pass_to_input(InputParameter< DOFs, CustomVector > &input) const
Copies the new output state to the current state of the input.
Definition output_parameter.hpp:123
Trajectory< DOFs, CustomVector > trajectory
Current trajectory.
Definition output_parameter.hpp:32
Main interface for the Ruckig algorithm.
Definition ruckig.hpp:25
Definition block.hpp:13
std::string join(const Vector &array, bool high_precision=false)
Join a vector for easy printing (e.g. to std::cout)
Definition utils.hpp:40

Python

from copy import copy
from ruckig import InputParameter, OutputParameter, Result, Ruckig, ControlInterface
if __name__ == '__main__':
# Create instances: the Ruckig OTG as well as input and output parameters
otg = Ruckig(3, 0.01) # DoFs, control cycle
inp = InputParameter(3)
out = OutputParameter(3)
inp.control_interface = ControlInterface.Velocity
inp.current_position = [0.0, 0.0, 0.5]
inp.current_velocity = [3.0, -2.2, -0.5]
inp.current_acceleration = [0.0, 2.5, -0.5]
inp.target_velocity = [0.0, -0.5, -1.5]
inp.target_acceleration = [0.0, 0.0, 0.5]
inp.max_acceleration = [3.0, 2.0, 1.0]
inp.max_jerk = [6.0, 6.0, 4.0]
print('\t'.join(['t'] + [str(i) for i in range(otg.degrees_of_freedom)]))
# Generate the trajectory within the control loop
first_output, out_list = None, []
res = Result.Working
while res == Result.Working:
res = otg.update(inp, out)
print('\t'.join([f'{out.time:0.3f}'] + [f'{p:0.3f}' for p in out.new_position]))
out_list.append(copy(out))
out.pass_to_input(inp)
if not first_output:
first_output = copy(out)
print(f'Calculation duration: {first_output.calculation_duration:0.1f} [µs]')
print(f'Trajectory duration: {first_output.trajectory.duration:0.4f} [s]')
# Plot the trajectory
# from pathlib import Path
# from plotter import Plotter
# project_path = Path(__file__).parent.parent.absolute()
# Plotter.plot_trajectory(project_path / 'examples' / '05_trajectory.pdf', otg, inp, out_list, plot_jerk=False)

Output Trajectory