#include <iostream>
const double control_cycle = 0.01;
const size_t DOFs = 3;
const size_t max_number_of_waypoints = 10;
{1.4, -1.6, 1.0},
{-0.6, -0.5, 0.4},
{-0.4, -0.35, 0.0},
{0.8, 1.8, -0.1}
};
std::cout << "t | position" << std::endl;
double calculation_duration = 0.0;
while (otg.update(input, output) == Result::Working) {
std::cout << output.time <<
" | " <<
join(output.new_position) << std::endl;
output.pass_to_input(input);
if (output.new_calculation) {
calculation_duration = output.calculation_duration;
}
}
std::cout << "Reached target position in " << output.trajectory.get_duration() << " [s]." << std::endl;
std::cout << "Calculation in " << calculation_duration << " [µs]." << std::endl;
}
int main()
Definition 01_position.cpp:8
Output of the Ruckig algorithm.
Definition output_parameter.hpp:15
Main interface for the Ruckig algorithm.
Definition ruckig.hpp:25
std::string join(const Vector &array, bool high_precision=false)
Join a vector for easy printing (e.g. to std::cout)
Definition utils.hpp:40
from copy import copy
from ruckig import InputParameter, OutputParameter, Result, Ruckig
if __name__ == '__main__':
otg = Ruckig(3, 0.01, 10)
inp = InputParameter(3)
out = OutputParameter(3, 10)
inp.current_position = [0.2, 0, -0.3]
inp.current_velocity = [0, 0.2, 0]
inp.current_acceleration = [0, 0.6, 0]
inp.intermediate_positions = [
[1.4, -1.6, 1.0],
[-0.6, -0.5, 0.4],
[-0.4, -0.35, 0.0],
[0.8, 1.8, -0.1],
]
inp.target_position = [0.5, 1, 0]
inp.target_velocity = [0.2, 0, 0.3]
inp.target_acceleration = [0, 0.1, -0.1]
inp.max_velocity = [1, 2, 1]
inp.max_acceleration = [3, 2, 2]
inp.max_jerk = [6, 10, 20]
print('\t'.join(['t'] + [str(i) for i in range(otg.degrees_of_freedom)]))
first_output, out_list = None, []
res = Result.Working
while res == Result.Working:
res = otg.update(inp, out)
print('\t'.join([f'{out.time:0.3f}'] + [f'{p:0.3f}' for p in out.new_position]))
out_list.append(copy(out))
out.pass_to_input(inp)
if not first_output:
first_output = copy(out)
print(f'Calculation duration: {first_output.calculation_duration:0.1f} [µs]')
print(f'Trajectory duration: {first_output.trajectory.duration:0.4f} [s]')